

Hydraulically released and spring operated multiple-disk brakes FDLB, LB

KWN 24001

IEBHERR

e c

Couplings from Dresden/Germany By specialists – for specialists

technical features

Hydraulically released spring loaded multiple-disk brakes see as holding- and operating brakes diverse application in the drive technology. Brakes are positively. The braking force is compression springs generated. The loosening effected hydraulically by airing of the piston. They are suited for both wet and dry operation. At pressure loss is a mechanical brake for locking emergency opening system provided. They are low maintenance and assembly of number of individual panels is the condition for a safety brake met. They have a high operating safety the lamellas steel / sintered bronze. For detailed technical statements the manual request.

applications

Hydraulically released spring loaded multiple-disk brakes are in the stationary and mobile versatile range whether or not combined with hydraulic motors. The brakes can lie in oil circuit of the engine. When starting of the hydromotor, the lift brakes in oil pressing of 15 - 38 bar. Thereafter, the full system pressure applied to 320 bar. When using fire-resistant fluids and boi-oils please bio-oils please feedback.

types

type A

cover plate closed, with flange

type B

cover plate open, with flange

type C

cover plate closed, without flange

type D

cover plate open, without flange

type E

no cover plate, without flange

type I

inner body

1

- 2 piston housing
 3 piston
 4 disk pack housing
 5 mounting flange
 6 outside disks
 7 inside disks
 8 hub
- 9 pressure spring

cover plate

- 10 fastening screw
- 11 plug screw
- 12 plug screw with gasket
- 13 dowel pin
- 14 small O-ring
- 15 large O-ring
- 16 assembly bolts
- 17 assembly bolts

Table 1					type of hub bore			
		tolerance H7						
		without hub keyway	with hub keywa	ay per DIN 6885 sheet 1	fit JS9			
hub bore	pilot bored		for one keyway	for two keyways	for two keyways			
				120° staggered	180° staggered			
symbol	v	-	P1	P2	P3			

¹⁾ finished bore per ISO fit H7, keyway according to DIN 6885, sheet 1, fit JS 9

- ²⁾ pilot bore $\pm 0,2$ without keyway, other pilot bores upon request
- ³⁾ the given torques apply to double springs in case of dry running: with oiled disks wet running: splash lubrication (oil type: ADDINOL gear oil CLP 68, temperature 60 °C)

⁴⁾ specification without backpressure of the system. The release pressure relates to the given moment and is proportional to it.

- ⁵⁾ relates to the rotating parts (hub with d_{1max} and inside disks)
- ⁶⁾ relates to design AI (pilot bored)
- 7) more sizes on request

characteristic values	\$												Ta	able 2
size ⁷⁾	6,3	10	16	25	40	63	100	160	250	400	630	1 000	1 600	2 500
torque dry ³⁾														
T _s [Nm]	75	195	275	320	610	865	1 430	2 800	3 950	6 750	9 100	15 800	24 000	44 800
T _ü [Nm]	90	235	350	410	780	1 100	1 750	3 600	5 100	8 600	11 500	21 000	30 500	57 000
torque wet3)														
T _s [Nm]	47	145	200	235	440	620	1 000	2 050	2 900	4 800	7 050	11 050	17 500	34 000
T _ü [Nm]	70	180	260	305	570	805	1 250	2 675	3 750	6 150	8 900	14 700	22 300	43 300
min. release pressure4)														
p [bar]	18	23	23	21	16	17	19	24	16	18	19	27	24	19
max. speed														
n [min ⁻¹]	7 000	5 000	4 500	4 200	3 600	3 000	2 500	2 000	1 600	1 300	1 100	900	800	600
mass moment of inertia5)														
J [kg cm ²]	0,595	1,85	3,625	8,213	14,13	30,77	68,14	184,8	572,5	1 233	2 697	6 993	12 494	45 587
mass ⁶⁾														
m [kg]	2,4	4,0	6,5	7,5	11,5	16	22	30,5	45,5	66	135	234	320	560
driving spline														
basic profile per DIN	5 480	5 480	5 480	5 480	5 480	867	5 480	867	867	867	867	867	867	867

main dimens	sions												Т	able 3
size ⁷⁾	6,3	10	16	25	40	63	100	160	250	400	630	1 000	1 600	2 500
overall dimensions														
d _A f7	83	105	120	135	155	180	205	245	290	345	400	480	555	710
I _A	59	67	77	81	90	95	100	110	135	145	165	195	220	250
hub														
d _{1 max} H7 ¹⁾	18	30	30	40	45	55	65	85	105	125	150	165	200	300
l,	35	38	44	45	52	55	60	68	90	95	110	127	147	155
d _{1 pilot bore} ²⁾	-	15	15	20	20	20	30	40	60	70	80	90	100	150
mounting														
d ₁	73	90	100	115	135	160	185	220	265	315	370	440	510	665
s ₁ 6x/12x	M6	M6	M8	M8	M8	M10	M10	M12	M14	M16	M16	M20	M24	M24
l ₂	11	13	13	14	20	15	20	20	25	25	25	25	40	50
hydraulic connection														
l ₉	21	24	27	30	34	32	33	37	44	46	56	60	65	85
I ₁₀	9	9	13	13	13	13	13	13	13	13	13	13	13	15
S ₂	M10x1	M10x1	M12x1,5	M12x1,5	M12x1,5	M12x1,5	M12x1,5	M12x1,5	M12x1,5	M12x1,5	M16x 1,5	M16x 1,5	M16x 1,5	M22x1,5
emergency release														
d ₈	42	56	58	68	85	103	120	152	180	220	280	330	380	460
s ₃	M4	M6	M6	M6	M8	M8	M8	M10	M12	M12	M12	M16	M16	M20
l ₇	10	16	16	16	20	20	20	20	20	20	20	30	30	35
centering dimensions	6	70		100	445	4.40	400	400	0.40	000	0.45	440	170	000
d ₉ H7	61	/8	86	100	115	142	163	192	242	290	345	412	4/2	622
l ₃	2	2	70.0	2	2 100 2	106	2	3 190 F	3	3	3 200	3 200	3	5
a _{2 min} H7	22	09	12,2	02,2	100,2	120	144	100,5	220	219	320	390	440	204 2
I ₈	2	2 15	Z 15	2 52	65	2	2	120	140	180	205	3 240	3 270	300
u ₆ п <i>1</i>	21	4J 8	43	JZ 10	14	10	90	120	140	100	203	240	210	25
1 ₆ other dimensions	1	0	0	10	14	10	3	12	14	10	20	25	25	25
d	34	52	58	62	85	92	110	122	143	167	209	230	270	405
d_3	32	50	56	60	76	89	108	119	140	164	206	200	210	400
d ₄ , d ₉	25	43	43	50	63	78	93	107	128	152	192	210	260	375
d	27	45	45	50	65	80	95	120	140	180	205	240	270	390
	54	61	69	73	82	86	91	.20	122	130	148	173	198	228
'1 	21	22	24	25	32	33	38	40	58	59	70	77	97	105
·4	7	8	10	10	10	11	11	14	16	18	20	25	25	25
.2		v		.•							20	_0	_0	-0

installation and operating conditions

installation and operating conditions

All component parts must be axially fixed and fastened. A precise centering of the brake is to be guaranteed. If two shaft ends are accommodated inside the hub, the bearings of the drive have to be brought as close as possible to the brake.

The brakes are functionally subject to slight brake-in wear, whereby the full torque is also guaranteed. Due to the automatic compensation by the piston, a readjustment is not necessary. Fully worn-out disks can only be exchanged as a package. In the event of any leakages the complete actuating unit has to be exchanged or work up.

The standard brakes are intended for horizontal installation. A deviation of up to \pm 15° is permissible. Other conditions require the manufacturers approval. The oil pipes should be as short as possible and without sharp bends or restrictions of diameter. The backflow system is to be laid out in such a way that no backpressure greater than 3 - 4 bar results. Also in the case of dry running, the connection of an overflow oil pipe is recommendable for safety reasons. Accessibility to the emergency release screws has to be assured. In released state, idle running torques exist (functionally). These can amount up to 2 % of the nominal torque.

size selection

For a professional coupling selection and the size determination available to the user our engineering staff.

ordering example: LB-AI - 25 - 32 P1 - KWN 24001

Designation of a hydraulically released, spring located multiple-disk brake, type A with hub (type I), nominal size 25, hub with finished bore $d_1 = 32$ mm, tole-rance H7, keyway according to DIN 6885 sheet 1.

cooling and lubrication

types of lubrication:

- flow through
- splash lubrication maximum submersion up to friction diameter (1/10 of the disk outside diameter)
- oil spray

Following requirements are to be observed regarding the lubricants:

- · high heat resistance and aging stability
- low tendency to settle
- good heat conducting and cooling characteristics
- compatibility with steel and neutral behaviour with copper (max. degree of corrosion 2 per DIN 51759)
- low alloying ingredients

standard values for safety factors				
use	S			
fans, conveyors, textile machines, generators				
lifts, mixers, cranes, machine tools, winches				
drilling rigs, excavators, lifts, mills, vibrators				
ball mills, piston compressors, rolling mills, centrifugal machines				

special designs

There are also multiple-disk brakes with special design available. These brakes can meet special requirements. On the following pages you see some requirements.

compare here also the F.E.M. guide lines 1.001

multiple disk brake with through flood disk package for running brake

multiple disk brake in double design with insidebody storage

multiple disk brake

with two joint shaft connections and insidebody storage

multiple disk brake with insidebody storage

model series LB inquiry hydraulically released, spring loaded multiple-disk brakes

Fax: +49 351 4999 233 • E-mail: info@kupplungswerk-dresden.de

company		
	contact pers	on date
	pnone	Tax
	E-mail	
	inquiry no	nroject nieces
	inqui j no.	project procee
drive unit		type of engaging operation
machine type		engagement when stopped ³⁾ holding brake
nominal torque	Nm	engagement during operation ³⁾ operating brake
maximum torque ¹⁾	Nm	
with nonuniform torque (if available, enclose torque-speed curve)		parameters (as operating brake)
maximum torque ²⁾	Nm	max. speed at the beginning (of the braking operation)
minimum torque ²⁾	Nm	maximum idle-running speed
nominal power	kW	at a percentage of
nominal speed or speed range	rpm	maximum load torque during the braking operation
mass moment of inertia on brake shaft	kgm	at a speed of
required safety factor		shortest time between two engagements
		number of engagements
use		desired slipping time
in a housing ³⁾ without housing ³⁾		has the user already selected a brake?
horizontal ³ vertical ³		exact designation of the selected brake
temperature range from to	°C	
in the case of wet running		geometric configuration
oil spray lubrication ³⁾ splash lubrication ³⁾		cover plate (side A) ves ³ no ³ closed ³ open ³
centrifugal lubrication ³⁾ circulation system lubrication ³⁾		flange (side B)
external lubrication ³⁾ intern	nal lubrication ³⁾	hub ves ³ no ³ pilot bored ³ finished
	mm2/2	other dimensions or conditions
in the case of dry running		u ₁ (117) -
		yes*/ no*/
operation in rooms ²⁷ with high relative air humidity conditional	ary running»	
splash water ³ steam ³ oil spray ³ splash oil ³	overflow of	 e.g. stalling torque with three-phase asynchronous motors torque fluctuations during one revolution (e.g. in the case of diesel engines) mark where applicable
remarks		
		date / sign

KWD Kupplungswerk Dresden GmbH • POB 27 01 44 • D-01171 Dresden • Phone: +49 351/49 99-0 • www.kupplungswerk-dresden.de

Löbtauer Straße 45, D-01159 Dresden Postfach 27 01 44, D-01171 Dresden Tel.: +49 (0) 351/49 99-0, Fax: +49 (0) 351/49 99-2 33 E-mail: kwd@kupplungswerk-dresden.de

www.kupplungswerk-dresden.de

Certified in accordance with ISO 9001: 2008 Scope development, manufacture, sale and servicing of couplings in the drive technology field

